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                                          Equilibrium and stability 
        The role of the principle of virtual power in elementary mechanics. 

                                          J. F. Besseling
1
 

 

Summary  In the description of a state of equilibrium the variable time is by  

definition absent, in thermodynamics as well as in mechanics. When a material body 

under the influence of the state of its environment permits a state of equilibrium the 

question of stability arises. The concepts of equilibrium and stability are discussed for 

the most elementary system of a solid body under the action of two external forces. 

For a rigid body the concept of a mechanically equivalent resultant force is discussed. 
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1 Introduction 

Forces being vector-valued functions, representing the mechanical action of the 

environment upon a material body, in textbooks the axioms of equilibrium are usually 

formulated in terms of vector equations. In author’s opinion a much more powerful 

approach is offered by the principle of virtual power, stating that in a state of 

equilibrium the power of the external forces is equal to zero for all kinematically 

admissible velocities of a body, that produce no deformation of the body. Not only the 

equilibrium equations do follow, but also a criterion for stability of the state of 

equilibrium is obtained. 

 

2.Rigid body under a pair of external forces 

We consider a rigid body under the influence of two concentrated external forces, 

2 and F F
1

, acting in the material points 1 and 2 of the body, defined by position 

vectors 2 and x x
1

. 

The condition for equilibrium reads: the virtual power of the forces 2 and F F
1

is equal 

to zero for all velocities 1 2 and x x , by which the body does not deform. With the aid 

of the inner product  of vector quantities, and with the scalar product ,   of forces 

and velocities and of position vectors and velocities, this condition is expressed by 
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The subsidiary condition 0s  may be taken into account by means of a lagrangian 

multiplier  : 
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From condition (2.2) we obtain the vector equations of equilibrium: 
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        F F x x F F                                          (2.3) 

In the case of equilibrium the two forces are equal in magnitude, opposite in direction, 

and acting along the line connecting the two material points of the body, where they 

are acting. The multiplier   has been chosen such that it has the same physical 

dimension as the forces, with a sign that implies tension when   is positive and 

compression when   is negative. The multiplier   may be interpreted as a state 

variable of the body, producing in the points 1 and 2 forces that annul the action of the 

external forces. 

 

3.Stability of a rigid body under a pair of forces 

We shall define stability of a state of equilibrium of a rigid body as a state in which 

the kinetic energy of the mass of the body is constant in time, and in which any 

disturbance of this kinetic energy leads to a decrease of this disturbance. This is in 

accordance with the notion that in a state of equilibrium all measurable quantities are 

independent of time, including the velocities of the body in an inertial system and the 

relative dimensions of the body. 

In order to determine the stability of the state of equilibrium of  a rigid body under the 

influence of a pair of forces we must investigate, whether there exists a kinematically 

admissible movement, for which the system of  forces produces a positive virtual 

power. In that case the state is unstable, because a disturbance of the state of 

equilibrium can lead to release of energy, which at least partially, depending on the 

dissipative characteristics of the situation, will give rise to an increase of kinetic 

energy. Disturbing a state of equilibrium will lead to a physical process with time as 

an independent variable; a process that has to be described in the so-called physical 

space. Equilibrium is a state, in which the variable time is absent and which is 

described in the so-called state space. 

The question is whether the body is in a stable state under the influence of a given 

state of the environment as represented by the two forces, which are by definition 

independent of the instantaneous movement of the body. The “body forces” in the 

points 1 and 2 are however not independent of  a virtual movement of the body. For 

velocities 1 2 and x x  these body forces in points 1 and 2 have a rate of change given 

by 

          1 2 1 2 and   + .
ss

   x x x x                                                         (3.1) 

Since the distance of the points 1 and 2 does not change, the vector  1 2x x   is 

orthogonal to the vector  1 2x x : 

          1 2 1 2, 0.ss      x x x x                                                                    (3.2) 

As a consequence the external forces produce no virtual power.The changes of the 

body forces produce a virtual power 
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Stability is determined by the sign of  : 

        
Tension: 0    Stability,

Compression: <0    Instability.





 


                                                        (3.4) 

Note that the state variable σ determines whether the body is in a stable or in an 

unstable state. 
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The introduction of the concept of a potential function for the external forces gives the 

possibility to base the definition of equilibrium and stability on the principle of 

minimum potential energy, but this gives no new insight or new results in the case of 

rigid bodies. 

 

 

4.Deformable body under the influence of a pair of forces 

Though it is perfectly possible to stay with the principle of virtual power for the 

formulation of the conditions of equilibrium and stability, we shall discuss the 

deformable body in terms of the principle of minimum potential energy, which is 

derived from the principle of virtual power. 

As a difference between the rigid body and the deformable body we note in the first 

place  that the position of the material points 1 and 2 for the rigid body could be 

defined independent of the magnitude of the two external forces, acting in these 

points, while for the deformable body the position of these points is influenced by the 

magnitude of the external forces. For the rigid body in the case of equilibrium the 

external forces would act along a line, determined by  1 2x x . If in the case of the 

deformable body the material points 1 and 2 without the presence of external forces 

would have position vectors 02 and x x
01

, these points have in the case of equilibrium 

under the forces 1 2 and F F  undergone displacements 1 1 01 2 2 02 and    u x x u x x , 

by which the distance of these points will have changed. This change of distance can 

be characterized by a dimensionless strain  : 
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The expression for   has been chosen such that for abs( )<<1  we have the 

simplification 
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Thus there is a simple relation with the relative change of length, while the 

complication of taking the square root is avoided. 

Elasticity of a material is the property, that work performed on a body in deforming it 

is completely or partially stored as an elastic potential. This potential is a function of 

variables of state, defined in the state space. As mentioned before in state space the 

variable time is absent. State space is used to describe states of equilibrium, in which 

by definition time does not play a role and in which all changes of variables are by 

definition reversible. If a perfectly elastic material would exist the strain quantity (4.2) 

could be considered as the state variable in our considerations. However generally the 

elastic potential depends on an “elastic” strain, that changes in the so-called physical 

space with changes of the quantity (4.2), but is not equal to this quantity. Only in the 

state space holds by definition that the virtual rates of the elastic strain are equal to the 

total virtual rates of strain. 

We shall denote elastic strain as the state variable by    and define the elastic 

potential by 

        21
2 .U Cs                                                                                                (4.3) 
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Since the work of deformation is necessarily positive, for ( ) 1abs    a quadratic 

expression suffices. The constant C is the so-called spring constant, here chosen with 

the physical dimension of a force. 

For all virtual velocities in state space we have 

     1 1 2 2, ,   .
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F u F u                                                                       (4.4) 

On the other hand by the principle of virtual power the equilibrium condition of the 

state space requires 
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From (4.4) and (4.5) we have for the state variable   
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In order for a deformable body to be in an equilibrium state the variable σ must be 

determined by an elastic law like (4.6) in terms of the elastic component of strain ' . 

For a real material the value of σ will be limited by an elastic limit. If the external 

forces would require a value of σ exceeding this limit, equilibrium cannot exist under 

these forces. 

We may introduce the potential function P, representing the potential of the external 

forces and the elastic potential of the deformable body. 

       21
2 1 1 2 2, ,P Cs     F u F u  .                                                                  (4.7) 

Now the equilibrium condition and stability conditions of the principle of virtual 

power may be replaced by the principle, that the potential P has a stationary value in a 

state of equilibrium and a minimum value in the case of stable equilibrium. 

The condition for a stationary value is 
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Note that the variation of the elastic strain and of the total strain are identical in the 

state space, in which equilibrium is defined. It is seen that (4.8) presents again the 

vector equations of equilibrium (2.3). 

To the second variation of the potential P only the elastic potential of the body gives a 

contribution, 
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the sign of which decides on stability. A positive sign ( 0,  tension) implies a 

minimum for P and ensures stability, while a negative sign ( 0,  compression) 

entails instability. 

It is important to observe that we do not change the state, neither the state variable   

of the body nor the state of the environment, as manifested by the forces 1 2 and F F . 
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5.The resultant force on a rigid body 

If we consider external forces, acting in  material points of a body, it will be clear that 

they cannot be replaced by resultant forces if the body is deformable. On the other 

hand by considering rigid bodies it is a well posed problem to replace two forces, 

acting in points 1 and 2, by one resultant force in a point r, that produces the same 

contribution in the equations of equilibrium and in the condition for stability. 

First we show that a resultant force with respect to equilibrium is defined if the two 

forces 1 2 and F F  are such that the lines in their direction through the points 1 and 2 

intersect at a point 0. 

The condition for statical equivalence of the resultant force rF  with the two forces 

1 2 and F F  is given by the requirement that the contributions to the virtual power 

equation are equal. With 0 as the point of intersection, and with distances 
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or 
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It follows 
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A force rF , statically equivalent to two forces 1 2 
 and F F  could be found by 

considering two forces acting along lines intersecting in a point 0 . This is a necessary 

condition for making the virtual power of rF  equal to the virtual power of the two 

forces 1 2 and F F   together for an arbitray movement of the body, consisting of a 

translational velocity 0u  of one material point and a rotational velocity   of the plane 

through 1 2 and F F  about this point. Such a movement gives for the material points 

1,2, and r: 
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This movement entails a rate of change of body forces given by 

       

 

 

 

1
1 0 1 1

1

2
2 0 2 2

2

0

,

,

.r
r r r

r

d

d

d


 


 


 







 

 

 

x x e

x x e

x x e

                                                                              (5.4) 

It should observed that the point r is statically indeterminate. With respect to the 

equilibrium condition the point where 
rF  is acting on the body may be any point on 

the line through 0, determined by 
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For rF  to be equivalent with respect to stability, the virtual power of the last 

expression in (5.4) must be equal to the sum of the power of the two other 

expressions. This gives the equation that determines the position of the point r: 
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Hence the point r on the line through 0 determined by (5.5) on a distance rd from the 

point 0 is the point, where a resultant force rF  acting in this point would be fully 

equivalent to the two forces 1 2 and F F  acting in the points 1 and 2. As it is easily 

verified the lines through the three points 1,2, r in the directions of the components in 

(5.4) have a common point of intersection. 

Depending on the effect of the deformations on the phenomena to be studied, the 

results derived for a rigid body may or may not be relevant for the equilibrium and 

stability of a deformable body. 

 

6.Concluding remarks 

In author’s opinion the teaching of mechanics would benefit from a replacement of 

the usual presentations on the equilibrium of material bodies, based upon the axioms 

of the balance of forces and the balance of moments, by a consistent application of the 

principle of virtual power. Also the teaching of mechanics and thermodynamics 

should not be practised as if they were two independent disciplines [1]. 
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